Research ArticleMATERIALS SCIENCE

Self-organization of helium precipitates into elongated channels within metal nanolayers

See allHide authors and affiliations

Science Advances  10 Nov 2017:
Vol. 3, no. 11, eaao2710
DOI: 10.1126/sciadv.aao2710

You are currently viewing the abstract.

View Full Text

Abstract

Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with the amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. Vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text