Research ArticlePLASMONICS

Imaging the dark emission of spasers

+ See all authors and affiliations

Science Advances  14 Apr 2017:
Vol. 3, no. 4, e1601962
DOI: 10.1126/sciadv.1601962

You are currently viewing the abstract.

View Full Text

Abstract

Spasers are a new class of laser devices with cavity sizes free from optical diffraction limit. They are an emergent tool for various applications, including biochemical sensing, superresolution imaging, and on-chip optical communication. According to its original definition, a spaser is a coherent surface plasmon amplifier that does not necessarily generate a radiative photon output. However, to date, spasers have only been studied with scattered photons, and their intrinsic surface plasmon emission is a “dark” emission that is yet to be revealed because of its evanescent nature. We directly image the surface plasmon emission of spasers in spatial, momentum, and frequency spaces simultaneously. We demonstrate a nanowire spaser with a coupling efficiency to plasmonic modes of 74%. This coupling efficiency can approach 100% in theory when the diameter of the nanowire becomes smaller than 50 nm. Our results provide clear evidence of the surface plasmon amplifier nature of spasers and will pave the way for their various applications.

Keywords
  • plasmonics
  • spaser
  • nanolaser
  • surface plasmon imaging
  • leakage radiation
  • on-chip light source

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Related Content

More Like This