From the generalized reflection law to the realization of perfect anomalous reflectors

See allHide authors and affiliations

Science Advances  11 Aug 2017:
Vol. 3, no. 8, e1602714
DOI: 10.1126/sciadv.1602714

You are currently viewing the abstract.

View Full Text


The use of the generalized Snell’s law opens wide possibilities for the manipulation of transmitted and reflected wavefronts. However, known structures designed to shape reflection wavefronts suffer from significant parasitic reflections in undesired directions. We explore the limitations of the existing solutions for the design of passive planar reflectors and demonstrate that strongly nonlocal response is required for perfect performance. A new paradigm for the design of perfect reflectors based on energy surface channeling is introduced. We realize and experimentally verify a perfect design of an anomalously reflective surface using an array of rectangular metal patches backed by a metallic plate. This conceptually new mechanism for wavefront manipulation allows the design of thin perfect reflectors, offering a versatile design method applicable to other scenarios, such as focusing reflectors, surface wave manipulations, or metasurface holograms, extendable to other frequencies.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text