Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses

See allHide authors and affiliations

Science Advances  12 Sep 2018:
Vol. 4, no. 9, eaat4752
DOI: 10.1126/sciadv.aat4752


The human brain is a complex integrated spatiotemporal system, where space (which neuron fires) and time (when a neuron fires) both carry information to be processed by cognitive functions. To parallel the energy efficiency and computing functionality of the brain, methodologies operating over both the space and time domains are thus essential. Implementing spatiotemporal functions within nanoscale devices capable of synaptic plasticity would contribute a significant step toward constructing a large-scale neuromorphic system that emulates the computing and energy performances of the human brain. We present a neuromorphic approach to brain-like spatiotemporal computing using resistive switching synapses. To process the spatiotemporal spike pattern, time-coded spikes are reshaped into exponentially decaying signals that are fed to a McCulloch-Pitts neuron. Recognition of spike sequences is demonstrated after supervised training of a multiple-neuron network with resistive switching synapses. Finally, we show that, due to the sensitivity to precise spike timing, the spatiotemporal neural network is able to mimic the sound azimuth detection of the human brain.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text